Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 4 - Review Exercises - Page 646: 103

Answer

The exact value of the provided expression is $-\frac{\sqrt{3}}{3}$.

Work Step by Step

Let us assume $\theta ={{\cos }^{-1}}\left( -\frac{\sqrt{3}}{2} \right)$. Then, $\cos \theta =-\frac{\sqrt{3}}{2}$ We know that for the cosine function, the interval for the angle is $\left[ 0,\pi \right]$. Thus, the only angle that satisfies $\cos \theta =-\frac{\sqrt{3}}{2}$ is $\left( \frac{5\pi }{6} \right)$. Hence, $\theta =\left( \frac{5\pi }{6} \right)$ and the exact value of the given expression is $\begin{align} & \tan \left[ {{\cos }^{-1}}\left( -\frac{\sqrt{3}}{2} \right) \right]=\tan \left( \theta \right) \\ & =\tan \left( \frac{5\pi }{6} \right) \\ & =-\frac{\sqrt{3}}{3} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.