Answer
$ b=6.71$
$\angle A =16.6^{\circ}$
and $\angle B=73.4^{\circ}$
Work Step by Step
The trigonometric ratios are as follows: $\sin \theta= \dfrac{opposite}{hypotenuse}$ ; $\cos \theta= \dfrac{Adjacent}{hypotenuse}$ and $\tan \theta= \dfrac{Opposite}{Adjacent}$
$ b=\sqrt{c^2-a^2}=\sqrt{(7)^2-(2)^2}=6.71$
$\sin A =\dfrac{a}{c} \implies A=arcsin (2/7)=16.6^{\circ}$
and $\angle B=90^{\circ}- 16.6^{\circ}=73.4^{\circ}$
So, $ b=6.71$
$\angle A =16.6^{\circ}$
and $\angle B=73.4^{\circ}$