Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 4 - Review Exercises - Page 646: 114

Answer

The inverse trigonometric function can be written as $\frac{x\sqrt{{{x}^{2}}-1}}{\sqrt{{{x}^{2}}-1}}$.

Work Step by Step

Let us consider $\theta ={{\sin }^{-1}}\frac{1}{x}$; then multiply on both sides by $\sin $. Since, $\sin \theta =\frac{1}{x}$ Use the $\sin $ formula in the right triangle $ABC$. So, $\sin \theta =\frac{p}{r}$ Use the Pythagorean Theorem to find the base. $\begin{align} & {{r}^{2}}={{p}^{2}}+{{b}^{2}} \\ & {{x}^{2}}={{1}^{2}}+{{b}^{2}} \\ & {{b}^{2}}={{x}^{2}}-1 \\ & b=\sqrt{{{x}^{2}}-1} \end{align}$ Then, use the $\sec $ formula in the above right triangle: $\begin{align} & \sec \theta =\frac{r}{b} \\ & =\frac{x}{\sqrt{{{x}^{2}}-1}} \end{align}$ Then, rationalize the above expression as: $\frac{x}{\sqrt{{{x}^{2}}-1}}\times \frac{\sqrt{{{x}^{2}}-1}}{\sqrt{{{x}^{2}}-1}}=\frac{x\sqrt{{{x}^{2}}-1}}{{{x}^{2}}-1}$ Hence, the inverse trigonometric function can be written as $\frac{x\sqrt{{{x}^{2}}-1}}{\sqrt{{{x}^{2}}-1}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.