Answer
$\dfrac{1}{2},\dfrac{1}{4},0,\dfrac{-1}{4},\dfrac{-1}{2},\dfrac{-3}{4}$
Work Step by Step
Formula to calculate the nth term of an arithmetic sequence is: $a_n=a_1+d(n-1)$
Here, $a_1: $ First term and $d=$ common difference
$a_1=\dfrac{3}{4}+(-\dfrac{1}{4})(1-1)=\dfrac{1}{2}; \\a_2=\dfrac{3}{4}+(-\dfrac{1}{4})(2-1)=\dfrac{1}{4};\\a_3=\dfrac{3}{4}+(-\dfrac{1}{4})(3-1)=0;\\a_4=\dfrac{3}{4}+(-\dfrac{1}{4})(4-1)=\dfrac{-1}{4};
\\a_5=\dfrac{3}{4}+(-\dfrac{1}{4})(5-1)=\dfrac{-1}{2};\\a_6=\dfrac{3}{4}+(-\dfrac{1}{4})(6-1)=\dfrac{-3}{4}$
Hence, the first six terms are: $\dfrac{1}{2},\dfrac{1}{4},0,\dfrac{-1}{4},\dfrac{-1}{2},\dfrac{-3}{4}$