Answer
$300,210,120,30,-60,-150$
Work Step by Step
Formula to calculate the nth term of an arithmetic sequence is: $a_n=a_1+d(n-1)$
Here, $a_1: $ First term and $d=$ common difference
$a_1=300+(-90)(1-1)=300; \\a_2=300+(-90)(2-1)=210;\\a_3=300+(-90)(3-1)=120;\\a_4=300+(-90)(4-1)=30;
\\a_5=300+(-90)(5-1)=-60;\\a_6=300+(-90)(6-1)=-150$
Hence, the first six terms are: $300,210,120,30,-60,-150$