Answer
$\dfrac{5}{2},2,\dfrac{3}{2},1,\dfrac{1}{2},0$
Work Step by Step
Formula to calculate the nth term of an arithmetic sequence is: $a_n=a_1+d(n-1)$
Here, $a_1: $ First term and $d=$ common difference
$a_1=\dfrac{5}{2}+(-\dfrac{1}{2})(1-1)=\dfrac{5}{2}; \\a_2=\dfrac{5}{2}+(-\dfrac{1}{2})(2-1)=2;\\a_3=\dfrac{5}{2}+(-\dfrac{1}{2})(3-1)=\dfrac{3}{2};\\a_4=\dfrac{5}{2}+(-\dfrac{1}{2})(4-1)=1;
\\a_5=\dfrac{5}{2}+(-\dfrac{1}{2})(5-1)=\dfrac{1}{2};\\a_6=\dfrac{5}{2}+(-\dfrac{1}{2})(6-1)=0$
Hence, the first six terms are: $\dfrac{5}{2},2,\dfrac{3}{2},1,\dfrac{1}{2},0$