Answer
$\text{midpoint} = (3\sqrt{2}, 0)$
Work Step by Step
Simplify $\sqrt{50}$ to obtain:
$\sqrt{50} = \sqrt{25(2)} = \sqrt{5^2(2)} = 5\sqrt{2}$
Thus, the first point is the same as the point $(5\sqrt{2}, -6)$
RECALL:
The midpoint of the line segment whose endpoints are $(x_1, y_1)$ and $(x_2, y_2)$ can be found using the midpoint formula:
$\text{midpoint}=\left(\dfrac{x_1+x_2}{2}, \dfrac{y_1+y_2}{2} \right)$
Use the formula above to obtain:
$\text{midpoint} = \left(\dfrac{5\sqrt{2}+\sqrt{2}}{2}, \dfrac{-6+6}{2}\right)=\left(\dfrac{6\sqrt{2}}{2}, \dfrac{0}{2}\right)
\\\text{midpoint} = (3\sqrt{2}, 0)$