Answer
$\text{midpoint} = (2\sqrt{2}, 0)$
Work Step by Step
Simplify $\sqrt{18}$ to obtain:
$\sqrt{18} = \sqrt{9(2)} = \sqrt{3^2(2)} = 3\sqrt{2}$.
Thus, the first point is the same as the point $(3\sqrt{2}, -4)$
RECALL:
The midpoint of the line segment whose endpoints are $(x_1, y_1)$ and $(x_2, y_2)$ can be found using the midpoint formula:
$\text{midpoint}=\left(\dfrac{x_1+x_2}{2}, \dfrac{y_1+y_2}{2} \right)$
Use the formula above to obtain:
$\text{midpoint} = \left(\dfrac{3\sqrt{2}+\sqrt{2}}{2}, \dfrac{-4+4}{2}\right)=\left(\dfrac{4\sqrt{2}}{2}, \dfrac{0}{2}\right)
\\\text{midpoint} = (2\sqrt{2}, 0)$