Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 5 - Exponential and Logarithmic Functions - 5.5 Properties of Logarithms - 5.5 Assess Your Understanding - Page 305: 60

Answer

$-3\log_2{x}$

Work Step by Step

Recall: (1) $\sqrt[m]{a}=a^{\frac{1}{m}}$ (2) $\log_a {x^n}=n\cdot \log_a {x}$. (3) $\log_a{xy}=\log_a{x} +\log_a{y}$ (4) $\log_a{\frac{x}{y}}=\log_a{x} -\log_a{y}$ Use Rule(3) above to obtain: $\log_2{(\frac{1}{x})}+\log_2{(\frac{1}{x^2})}\\ =\log_2{\left(\frac{1}{x}\cdot \frac{1}{x^2}\right)}\\ =\log_2{(\frac{1}{x^3})}$ Use the rule $\frac{1}{a^m}=a^{-m}$ to obtain $\log{\left(\frac{1}{x^3}\right)}=\log_2{\left(x^{-3}\right)}$ Use Rule(2) above to obtain: $\log_2{x^{-3}}=-3\log_2{x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.