Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 5 - Exponential and Logarithmic Functions - 5.5 Properties of Logarithms - 5.5 Assess Your Understanding - Page 305: 51

Answer

$\log{x}+log{(x+2)}-2\cdot \log{(x+3)}.$

Work Step by Step

Recall: (1) $\sqrt[m]{a}=a^{\frac{1}{m}}$ (2) $\log_a {x^n}=n\cdot \log_a {x}$. (3) $\log_a{xy}=\log_a{x} +\log_a{y}$ (4) $\log_a{\frac{x}{y}}=\log_a{x} -\log_a{y}$ Use Rule (4) to obtain: $\log{\frac{x(x+2)}{(x+3)^2}}=\log{x(x+2)}-\log{(x+3)^2}$. Use Rule (2) to obtain: $\log{x(x+2)}-\log{(x+3)^2}=\log{(x(x+2))}-2\cdot \log{(x+3)}.$ Use Rule (3) to obtain: $\log{(x(x+2))}-2\cdot \log{(x+3)}=\log{x}+log{(x+2)}-2\cdot \log{(x+3)}.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.