Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 5 - Exponential and Logarithmic Functions - 5.5 Properties of Logarithms - 5.5 Assess Your Understanding - Page 305: 35

Answer

$\frac{1}{5}\cdot (a+b)$

Work Step by Step

Recall: (1) $\sqrt[m]{a}=a^{\frac{1}{m}}$ (2) $\log_a {x^n}=n\cdot \log_a {x}$. (3) $\log_a{xy}=\log_a{x} +\log_a{y}$ Use rule (1) above to obtain $\ln{\sqrt[5]{6}}=\ln{(6^{\frac{1}{5}})}$ Use rule (2) above to obtain $\ln{(6^{\frac{1}{5}})}=\frac{1}{5}\cdot \ln {6}.$ Use rule (3) above to obtain $\frac{1}{5}\cdot \ln {6} \\=\frac{1}{5}\cdot \ln {(2\cdot3)} \\=\frac{1}{5}\cdot (\ln {2}+\ln{3}) \\=\frac{1}{5}\cdot (a+b).$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.