Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.5 - Indeterminate Forms and L'Hopital's Rule - Exercises 7.5 - Page 410: 82

Answer

$\infty$

Work Step by Step

consider $\lim\limits_{x \to \infty} f(x)=\lim\limits_{x \to \infty} (\sqrt {x^3+1}-\sqrt x)$ Re-arrange as: $\lim\limits_{x \to \infty} (\sqrt {x^3+1}-\sqrt x)=\lim\limits_{x \to \infty} x (\dfrac{\sqrt {x^3+1}}{x}-\dfrac{\sqrt x}{x})$ Thus, $\lim\limits_{x \to \infty} (\sqrt {1+\dfrac{1}{x^2}}-\sqrt{\dfrac{1}{x}})=\lim\limits_{x \to \infty} (x) \cdot (1)$ and $\lim\limits_{x \to \infty} (x)(1)=\infty$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.