Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.5 - Indeterminate Forms and L'Hopital's Rule - Exercises 7.5 - Page 410: 76

Answer

a) The limit provided in part(a) is not correct. b) The limit provided in part(b) is correct.

Work Step by Step

(a) L-Hospital's rule is defined as: $\lim\limits_{x \to \infty} f(x)=\lim\limits_{x \to \infty} \dfrac{p'(x)}{q'(x)}$ Here, $\lim\limits_{x \to 0} \dfrac{x^2-2x}{x^2-\sin x}=\lim\limits_{x \to 0} \dfrac{2x-2}{2x-\cos x}=1$ Also, $\lim\limits_{x \to 0} \dfrac{x^2-2x}{x^2-\sin x}=\lim\limits_{x \to 0} \dfrac{2x-2}{2x-\cos x} $ and $\lim\limits_{x \to 0} \dfrac{2x-2}{2x-\cos x} \ne \lim\limits_{x \to 0} \dfrac{2}{2+\sin x}=1$ We cannot use L-Hospital's rule because we do not get any indeterminate form of limit. (b) $\lim\limits_{x \to 0} \dfrac{x^2-2x}{x^2-\sin x}=\lim\limits_{x \to 0} \dfrac{2x-2}{2x-\cos x}$ or, $\dfrac{0-2}{0-1}=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.