Answer
$1$
Work Step by Step
Here, we have $\ln f(x)=x \ln x$
But $\lim\limits_{x \to 0} f(0)=\dfrac{\infty}{\infty}$
This shows an indeterminate form of limit, thus we will apply L-Hospital's rule such as:
$\lim\limits_{x \to \infty} f(x)=\lim\limits_{x \to \infty} \dfrac{p'(x)}{q'(x)}$
$e^{\lim\limits_{x \to 0} \dfrac{1/x}{-1/x^2}}=e^{\lim\limits_{x \to 0} (-x)}$
and $e^{0}=1$