Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.5 - Indeterminate Forms and L'Hopital's Rule - Exercises 7.5 - Page 410: 71

Answer

$0$

Work Step by Step

$\lim\limits_{x \to \infty} f(x)=\lim\limits_{x \to\infty} \dfrac{2^x-3^x}{3^x+4^x}$ The given function can be re-arranged as: $\lim\limits_{x \to\infty} \dfrac{2^x-3^x}{3^x+4^x}(\dfrac{\frac{1}{3^x}}{\frac{1}{3^x}})=\lim\limits_{x \to\infty} \dfrac{(\frac{2}{3})^x-1}{1+(\dfrac{4}{3})^x}$ This implies that $\dfrac{0-1}{1+\infty}=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.