Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.5 - Indeterminate Forms and L'Hopital's Rule - Exercises 7.5 - Page 410: 67

Answer

$3$

Work Step by Step

Here, we have $\lim\limits_{x \to \infty} \dfrac{\sqrt {9x+1}}{\sqrt {x+1}}=\sqrt{\lim\limits_{x \to \infty} [\dfrac{9x+1}{x+1}]}$ or, $ \sqrt{\lim\limits_{x \to \infty} \dfrac{9x+1}{x+1}(\dfrac{\frac{1}{x}}{\frac{1}{x}})}=\sqrt{\lim\limits_{x \to \infty} \dfrac{9+(1/x)}{1+(1/x)}}$ and $\sqrt {\dfrac{9+0}{1+0}}=\sqrt 9=3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.