Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.5 - Indeterminate Forms and L'Hopital's Rule - Exercises 7.5 - Page 410: 57

Answer

$e^{1/2}$

Work Step by Step

Here,we have $\ln f(x)=\ln (1+2x)^{1/2 \ln x} $ and $\ln f(x)= \dfrac{\ln (1+2x)}{2 \ln x}$ But $\lim\limits_{x \to \infty} f(\infty)=\dfrac{\infty}{\infty}$ This shows an indeterminate form of limit, thus we will apply L-Hospital's rule such as: $\lim\limits_{x \to \infty} f(x)=\lim\limits_{x \to \infty} \dfrac{p'(x)}{q'(x)}$ $e^{\lim\limits_{x \to \infty} \dfrac{2/1+2x}{2/ x}}=e^{\lim\limits_{x \to \infty} \frac{1}{1/(x+2)}}$ Thus, $e^{\lim\limits_{x \to \infty} \dfrac{1}{1/ (x+2)}}=e^{1/2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.