Answer
$1$
Work Step by Step
$\lim\limits_{x \to 0^{+}} f(x)=\lim\limits_{x \to \dfrac{\pi}{2}^{-}} \dfrac{\cot x}{\csc x}$
The given function can be re-arranged as:
$\lim\limits_{x \to 0^{+}} (\dfrac{cos x/\sin x}{1/\sin x})=\lim\limits_{x \to 0^{+}} (\dfrac{\cos x}{\sin x})(\sin x)$
and $\lim\limits_{x \to 0^{+}} \cos x=\cos 0=1$