Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.5 - Indeterminate Forms and L'Hopital's Rule - Exercises 7.5 - Page 410: 70

Answer

$1$

Work Step by Step

$\lim\limits_{x \to 0^{+}} f(x)=\lim\limits_{x \to \dfrac{\pi}{2}^{-}} \dfrac{\cot x}{\csc x}$ The given function can be re-arranged as: $\lim\limits_{x \to 0^{+}} (\dfrac{cos x/\sin x}{1/\sin x})=\lim\limits_{x \to 0^{+}} (\dfrac{\cos x}{\sin x})(\sin x)$ and $\lim\limits_{x \to 0^{+}} \cos x=\cos 0=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.