Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.5 - Indeterminate Forms and L'Hopital's Rule - Exercises 7.5 - Page 410: 62

Answer

$1$

Work Step by Step

Here, we have $\ln f(x)=(\dfrac{1}{x}) \ln (\dfrac{x^2+1}{x-1})$ But $e^{\lim\limits_{x \to \infty} (\dfrac{\ln (\dfrac{x^2+1}{x-1})}{x})}=\dfrac{\ln \infty}{\infty}=\dfrac{\infty}{\infty}$ This shows an indeterminate form of limit, thus we will apply L-Hospital's rule such as: $\lim\limits_{x \to \infty} f(x)=\lim\limits_{x \to \infty} \dfrac{p'(x)}{q'(x)}$ $e^{\lim\limits_{x \to \infty} (\dfrac{\ln (\dfrac{x^2+1}{x-1})}{x})}=e^{\lim\limits_{x \to \infty} (\dfrac{\ln (x^2+1)-\ln (x+2)}{x})}$ or, $e^{\lim\limits_{x \to \infty} \dfrac{\frac{x^2+4x-1}{x^3+x^2+x+2}}{1}}=\dfrac{\infty}{\infty}$ This shows an indeterminate form of limit, thus we will again apply L-Hospital's rule such as: $\lim\limits_{x \to \infty} f(x)=\lim\limits_{x \to \infty} \dfrac{p'(x)}{q'(x)}$ $e^{\lim\limits_{x \to \infty} \dfrac{\frac{2x+4}{6x+4}}{1}}=e^{ \frac{0}{1}}=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.