Answer
${\frac{2}{3}({x^{2}}+1)^{3}}-\frac{3}{4}{({x^{2}}+1)^{\frac{7}{3}}}$
Work Step by Step
$\frac{2}{3({x^{2}}+1)^{-3}}-\frac{3\sqrt[3] (x^{2}+1)^{7}}{4}=\frac{2}{3({x^{2}}+1)^{-3}}-\frac{3({x^{2}}+1)^{\frac{7}{3}}}{4}=\frac{2}{\frac{3}{({x^{2}}+1)^{3}}}-\frac{3}{4}({x^{2}}+1)^{\frac{7}{3}}={\frac{2}{3}({x^{2}}+1)^{3}}-\frac{3}{4}{({x^{2}}+1)^{\frac{7}{3}}}$