Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 0 - Section 0.2 - Exponents and Radicals - Exercises - Page 16: 79

Answer

$\displaystyle \frac{3}{4}\cdot x^{1/2}-\frac{5}{3}\cdot x^{-1/2}+\frac{4}{3}\cdot x^{-3/2}$

Work Step by Step

Exponent form: An expression is in exponent form if * there are no radicals and * all powers of unknowns occur in the numerator. All terms in a sum or difference are of the form: (constant)(expression with x$)^{p}$ ----------------- First term has a radical, use $a^{m/n}=(a^{1/n})^{m}=\sqrt[n]{a^{m}}$ $\displaystyle \frac{3\sqrt{x}}{4}=\frac{3}{4}\cdot x^{1/2}$ Second term has a radical, use $a^{m/n}=(a^{1/n})^{m}=\sqrt[n]{a^{m}}$ $\displaystyle \frac{5}{3\sqrt{x}}=\frac{5}{3x^{1/2}}\qquad $ ...move $x^{1/2}$ out of the denominator, ...using $\displaystyle \quad a^{-n}=\frac{1}{a^{n}}=(\frac{1}{a})^{n}$ $=\displaystyle \frac{5}{3}\cdot x^{-1/2}$ Third term has a radical, use $a^{m/n}=(a^{1/n})^{m}=\sqrt[n]{a^{m}}$ $\displaystyle \frac{4}{3x\cdot x^{1/2}}=\qquad$ ....... use $a^{m}\cdot a^{n}=a^{m+n}$ $\displaystyle \frac{4}{3x^{1+1/2}}=\frac{4}{3}\cdot\frac{1}{x^{3/2}}\qquad $ ...move $x^{3/2}$ out of the denominator, ...using $\displaystyle \quad a^{-n}=\frac{1}{a^{n}}=(\frac{1}{a})^{n}$ $=\displaystyle \frac{4}{3}\cdot x^{-3/2}$ The expression, in exponent form is $\displaystyle \frac{3}{4}\cdot x^{1/2}-\frac{5}{3}\cdot x^{-1/2}+\frac{4}{3}\cdot x^{-3/2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.