Answer
$(\frac{x^{-1}y^{-2}z^2}{xy})^{-2} = \frac{x^4y^6}{z^4}$
Work Step by Step
By the formula given in pages 8 and 9.
$(\frac{x^{-1}y^{-2}z^2}{xy})^{-2} = \frac{1}{(\frac{x^{-1}y^{-2}z^2}{xy})^{2}} = \frac{1}{\frac{x^{-1\times2}y^{-2\times2}z^{2\times2}}{x^2y^2}} = \frac{x^2y^2}{x^{-2}y^{-4}z^4} = x^{2-(-2)}y^{2-(-4)}z^{-4} = x^4y^6\frac{1}{z^4} = \frac{x^4y^6}{z^4}$