Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 655: 6

Answer

$y = \frac{2}{\pi}x+1$

Work Step by Step

$x = e^t~sin~\pi t$ $y = e^{2t}$ We can find $\frac{dy}{dx}$: $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2e^{2t}}{e^t~sin~\pi t+\pi~e^t~cos~\pi t} = \frac{2e^t}{sin~\pi t+\pi~cos~\pi t}$ When $t=0$: $x = e^0~sin~(\pi \cdot 0) = 0$ $y = e^{(2)\cdot (0)} = 1$ $\frac{dy}{dx} = \frac{2e^0}{sin~(\pi\cdot 0 )+\pi~cos~(\pi\cdot 0)} = \frac{2}{0+\pi} = \frac{2}{\pi}$ We can find the equation of the tangent line: $(y-1) = \frac{2}{\pi}(x-0)$ $y = \frac{2}{\pi}x+1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.