Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 655: 16

Answer

$\frac{dy}{dx} = -\frac{2~cos~2t}{sin~t}$ $\frac{d^2y}{dx^2} = -\frac{2~cos~t~(2~sin^2~t+1)}{sin^3~t}$ The curve is concave upward when $~~\frac{\pi}{2} \lt t \lt \pi$

Work Step by Step

$x = cos~t$ $y = sin~2t$ We can find $\frac{dy}{dx}$: $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2~cos~2t}{-sin~t} = -\frac{2~cos~2t}{sin~t}$ We can find $\frac{d^2y}{dx^2}$: $\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}} = \frac{\frac{4~sin~2t~sin~t+2~cos~2t~cos~t}{sin^2~t}}{-sin~t} = -\frac{4~(2~sin~t~cos~t)~sin~t+2~(1-2sin^2~t)~cos~t}{sin^3~t}= -\frac{8~sin^2~t~cos~t-4~sin^2~t~cos~t+2~cos~t}{sin^3~t} = -\frac{4~sin^2~t~cos~t+2~cos~t}{sin^3~t} = -\frac{2~cos~t~(2~sin^2~t+1)}{sin^3~t}$ The curve is concave upward when $\frac{d^2y}{dx^2} \gt 0$ On the interval $0 \lt t \lt \pi~~$, note that $~~sin~t \gt 0$ $\frac{d^2y}{dx^2} \gt 0~~$ when $~~-[2~cos~t~(2~sin^2~t+1)] \gt 0$ $2~cos~t~(2~sin^2~t+1) \lt 0$ $cos~t \lt 0$ $\frac{\pi}{2} \lt t \lt \pi$ The curve is concave upward when $~~\frac{\pi}{2} \lt t \lt \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.