Answer
$y = 24x-40$
Work Step by Step
$x = \sqrt{t}$
$y = t^2-2t$
We can find $\frac{dy}{dx}$:
$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2t-2}{\frac{1}{2\sqrt{t}}} = 4\sqrt{t}~(t-1)$
When $t=4$:
$x = \sqrt{4} = 2$
$y = (4)^2-2(4) = 8$
$\frac{dy}{dx} = 4\sqrt{4}~(4-1) = 24$
We can find the equation of the tangent line:
$(y-8) = 24(x-2)$
$y = 24x-40$