Answer
$y = -x$
Work Step by Step
$x = t^3+1$
$y = t^4+t$
We can find $\frac{dy}{dx}$:
$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{4t^3+1}{3t^2}$
When $t=-1$:
$x = t^3+1$
$x = (-1)^3+1 = 0$
$y = t^4+t$
$y = (-1)^4+(-1) = 0$
$\frac{dy}{dx} = \frac{4(-1)^3+1}{3(-1)^2} = -1$
We can find the equation of the tangent line:
$(y-0) = -1(x-0)$
$y = -x$