Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 655: 31

Answer

$Area = \pi~ab$

Work Step by Step

$x = a~cos~\theta$ $dx = -a~sin~\theta~d\theta$ $y = b~sin~\theta$ To find the total area, we can find the area of one quadrant when $x$ goes from $0$ to $a$, and then multiply this area by 4. $Area = 4\times \int_{0}^{a}y~dx$ When $x = 0,$ then $\theta = \frac{\pi}{2}$ When $x = a,$ then $\theta = 0$ We can substitute to set up a new integral: $Area = 4\times \int_{0}^{a}y~dx = 4\times \int_{\pi/2}^{0}(b~sin~\theta)(-a~sin~\theta~d\theta)$ $Area = 4\times \int_{\pi/2}^{0}-ab~sin^2~\theta~d\theta$ $Area = 4\times \int_{\pi/2}^{0}-\frac{ab}{2}~(1-cos~2\theta)~d\theta$ $Area = 4\times \int_{\pi/2}^{0}\frac{ab}{2}~(cos~2\theta-1)~d\theta$ $Area = 4\times (\frac{ab}{2})~(\frac{sin~2\theta}{2}-\theta)\Big\vert_{\pi/2}^{0}$ $Area = (2ab)~(\frac{sin~2\theta}{2}-\theta)\Big\vert_{\pi/2}^{0}$ $Area = (2ab)~[(0-0)-(0-\frac{\pi}{2})]$ $Area = (2ab)~(\frac{\pi}{2})$ $Area = \pi~ab$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.