Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 655: 18

Answer

Horizontal tangent at $(2,-4)$ and $(0,0)$ Vertical tangents at $(2,-4)$ and $(-2,-2)$ Graphed with desmos.

Work Step by Step

$\displaystyle \frac{dy}{dx}=\frac{dy/dt}{dx/dt}$ The tangent is horizontal for $\displaystyle \frac{dy}{dt}=0$ $y=t^{3}-3t^{2}$ $\displaystyle \quad \frac{dy}{dt}=3t^{2}-6t=3t(t-2),$ $\displaystyle \frac{dy}{dt}=0\Rightarrow t=0$ or $t=2.$ When $t=2, \quad(x,y)=(2,-4)$ When $t=0, (x,y)=(0,0)$ The tangent is vertical for $\displaystyle \frac{dx}{dt}=0$ $x=t^{3}-3t$ $\displaystyle \quad \frac{dx}{dt}=3t^{2}-3=3(t+1)(t-1),$ $t=-1$ or $1$ When t$=1,\ \quad(x,y)=(-2,-2)$, and when t=$-1, \quad (x,y)=(2,-4).$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.