Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 655: 22

Answer

a: Lowest estimate at $(\frac{3}{2}, -\frac{2}{3})$, and leftmost at $(-1.1,1.1)$ b: Actual lowest at $(1.417, -0.4712)$, and leftmost at $(-1.191, 1.191)$

Work Step by Step

a: With Desmos, we can see that the lowest point on the function is somewhere around $(\frac{3}{2}, -\frac{2}{3})$, and the leftmost point is around $(-1.1,1.1)$ b: b: To find the exact values, we need to find the lowest horizontal asymptote, and thevertical asymptote closest to the left, respectively. $\frac{dx}{dt}=4t^{3}-2$ $\frac{dy}{dt}=1+4t^{3}$ $\frac{dy}{dx}=\frac{1+4t^{3}}{4t^{3}-2}$ Horizontal Asymptote: $1+4t^{3}=0$ $4t^{3}=-1$ $t^{3}=-\frac{1}{4}$ $t=-\sqrt[3] \frac{1}{4}$ Plug the values back into x and y. $x=t^{4}-2t= 1.417$ $y=t+t^{4}= -0.472$ The coordinates of the lowest value are $(1.417,-0.472)$ Vertical Asymptote: $4t^{3}-2=0$ $4t^{3}=2$ $t^{3}=\frac{2}{4}$ $t=\sqrt[3] \frac{1}{2}$ $x=t^{4}-2t= -1.191$ $y=t+t^{4}= 0.191$ The coordinates of the leftmost value are $(-1.191,1.191)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.