Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - 4.2 What Derivatives Tell Us - 4.2 Exercises - Page 257: 29

Answer

$$\eqalign{ & {\text{Increasing on }}\left( { - 1,0} \right),\left( {1,\infty } \right) \cr & {\text{Decreasing on }}\left( { - \infty , - 1} \right),\,\left( {0,1} \right) \cr} $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {x^{2/3}}\left( {{x^2} - 4} \right) \cr & {\text{Derivative}} \cr & f'\left( x \right) = {x^{2/3}}\left( {2x} \right) + \frac{2}{3}{x^{ - 1/3}}\left( {{x^2} - 4} \right) \cr & f'\left( x \right) = 2{x^{5/3}} + \frac{{2\left( {{x^2} - 4} \right)}}{{3{x^{1/3}}}} \cr & {\text{Set the derivative to 0}} \cr & 2{x^{5/3}} + \frac{{2\left( {{x^2} - 4} \right)}}{{3{x^{1/3}}}} = 0 \cr & \frac{{6{x^2} + 2{x^2} - 8}}{{3{x^{1/3}}}} = 0 \cr & {\text{Is not defined for }}x = 0 \cr & 8{x^2} - 8 = 0{\text{ }} \cr & {\text{Solving the equation we obtain}} \cr & x = - 1,\,\,\,x = 0{\text{ and }}x = 1 \cr & {\text{From the critical values we can make the next intervals}} \cr & \left( { - \infty , - 1} \right),\,\,\left( { - 1,0} \right),\,\,\left( {0,1} \right),\,\,\left( {1,\infty } \right) \cr & {\text{Now}}{\text{, we will evaluate the critical value and resume in a table}} \cr} $$ \[\begin{array}{*{20}{c}} {{\rm{Interval}}}&{{\rm{Test value }}\left( x \right)}&{{\rm{Sign of }}f'\left( x \right)}&{{\rm{Behavior of }}f\left( x \right)}\\ {\left( { - \infty , - 1} \right)}&{ - 2}& - &{{\rm{Decreasing}}}\\ {\left( { - 1,0} \right)}&{ - \frac{1}{2}}& + &{{\rm{Increasing}}}\\ {\left( {0,1} \right)}&{\frac{1}{2}}& - &{{\rm{Decreasing}}}\\ {\left( {1,\infty } \right)}&2& + &{{\rm{Increasing}}}\\ {}&{}&{}&{}\\ {}&{}&{}&{} \end{array}\] $$\eqalign{ & {\text{From the table we can conlude that the function is:}} \cr & {\text{Increasing on }}\left( { - 1,0} \right),\left( {1,\infty } \right) \cr & {\text{Decreasing on }}\left( { - \infty , - 1} \right),\,\left( {0,1} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.