Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - 4.2 What Derivatives Tell Us - 4.2 Exercises - Page 256: 28

Answer

$$\eqalign{ & {\text{Decreasing on }}\left( { - \pi , - \frac{\pi }{2}} \right),{\mkern 1mu} \left( {0,\frac{\pi }{2}} \right) \cr & {\text{Increasing on }}\left( { - \frac{\pi }{2},0} \right),\left( {\frac{\pi }{2},\pi } \right) \cr} $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {\cos ^2}x{\text{ on the interval }}\left[ { - \pi ,\pi } \right] \cr & {\text{Differentiate the function}} \cr & f'\left( x \right) = 2\left( {\cos x} \right)\left( { - \sin x} \right) \cr & f'\left( x \right) = - \sin 2x \cr & {\text{Set the derivative to 0}} \cr & - \sin 2x = 0 \cr & {\text{Solving the equation for the interval }}\left[ { - \pi ,\pi } \right]{\text{ we obtain}} \cr & x = - \pi ,{\mkern 1mu} {\mkern 1mu} - \frac{\pi }{2},{\mkern 1mu} {\mkern 1mu} 0,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \frac{\pi }{2},{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \pi \cr & {\text{From the critical values we can make the next intervals}}\, \cr & \left( { - \pi , - \frac{\pi }{2}} \right),{\mkern 1mu} {\mkern 1mu} \left( { - \frac{\pi }{2},0} \right),{\mkern 1mu} {\mkern 1mu} \left( {0,\frac{\pi }{2}} \right),{\mkern 1mu} {\mkern 1mu} \left( {\frac{\pi }{2},\pi } \right) \cr & {\text{Now, we will evaluate the critical value and resume in a table}} \cr} $$ \[\begin{array}{*{20}{c}} {{\text{Interval}}}&{{\text{Test value}}\left( x \right)}&{{\text{Sign of }}f'\left( x \right)}&{{\text{Behavior of }}f\left( x \right)} \\ {\left( { - \pi , - \frac{\pi }{2}} \right)}&{ - \frac{{5\pi }}{6}}& - &{{\text{Decreasing}}} \\ {\left( { - \frac{\pi }{2},0} \right)}&{ - \frac{\pi }{4}}& + &{{\text{Increasing}}} \\ {\left( {0,\frac{\pi }{2}} \right)}&{\frac{\pi }{4}}& - &{{\text{Decreasing}}} \\ {\left( {\frac{\pi }{2},\pi } \right)}&{\frac{{5\pi }}{6}}& + &{{\text{Increasing}}} \\ {}&{}&{}&{} \\ {}&{}&{}&{} \end{array}\] $$\eqalign{ & {\text{From the table we can conlude that the function is:}} \cr & {\text{Decreasing on }}\left( { - \pi , - \frac{\pi }{2}} \right),{\mkern 1mu} \left( {0,\frac{\pi }{2}} \right) \cr & {\text{Increasing on }}\left( { - \frac{\pi }{2},0} \right),\left( {\frac{\pi }{2},\pi } \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.