Answer
$$\eqalign{
& {\text{Concave up on }}\left( { - \infty ,4} \right) \cr
& {\text{Concave down on }}\left( {4,\infty } \right) \cr
& {\text{The inflection points is at: }}x = 4 \cr} $$
Work Step by Step
$$\eqalign{
& g\left( x \right) = \root 3 \of {x - 4} \cr
& {\text{Calculate the second derivative}} \cr
& g'\left( x \right) = \frac{d}{{dx}}\left[ {\root 3 \of {x - 4} } \right] \cr
& g'\left( x \right) = \frac{1}{3}{\left( {x - 4} \right)^{ - 2/3}} \cr
& g''\left( x \right) = \frac{d}{{dx}}\left[ {\frac{1}{3}{{\left( {x - 4} \right)}^{ - 2/3}}} \right] \cr
& g''\left( x \right) = - \frac{2}{9}{\left( {x - 4} \right)^{ - 5/3}} \cr
& g''\left( x \right) = - \frac{2}{{9{{\left( {x - 4} \right)}^{5/3}}}} \cr
& {\text{The second derivative is not defined at }}x = 4 \cr
& {\text{That points is candidate for the inflection points}} \cr
& {\text{We need evaluate the intervals }}\left( { - \infty ,4} \right){\text{ and }}\left( {4,\infty } \right) \cr
& {\text{Now}}{\text{, we will evaluate test values and resume in a table}} \cr
& {\text{to determinate whether the concavity changes at these points}} \cr} $$
\[\begin{array}{*{20}{c}}
{{\text{Interval}}}&{{\text{Test value }}\left( x \right)}&{{\text{Sign of }}g''\left( x \right)}&{{\text{Behavior of }}g\left( x \right)} \\
{\left( { - \infty ,4} \right)}&3&{g''\left( 3 \right) > 0}&{{\text{Concave up}}} \\
{\left( {4,\infty } \right)}&5&{g''\left( 5 \right) < 0}&{{\text{Concave down}}}
\end{array}\]
$$\eqalign{
& {\text{From the table we can conclude that the function is:}} \cr
& {\text{Concave up on }}\left( { - \infty ,4} \right) \cr
& {\text{Concave down on }}\left( {4,\infty } \right) \cr
& {\text{The inflection points is at: }}x = 4 \cr} $$