Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - 4.2 What Derivatives Tell Us - 4.2 Exercises - Page 257: 36

Answer

$$\eqalign{ & {\text{Increasing on }}\left( {0,3} \right),\left( {5,\infty } \right) \cr & {\text{Decreasing on }}\left( { - \infty ,0} \right),\,\left( {3,5} \right) \cr} $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{{{x^4}}}{4} - \frac{{8{x^3}}}{3} + \frac{{15{x^2}}}{2} + 8 \cr & {\text{Derivative}} \cr & f'\left( x \right) = {x^3} - 8{x^2} + 15x \cr & {\text{Set the derivative to 0}} \cr & {x^3} - 8{x^2} + 15x = 0 \cr & x\left( {{x^2} - 8x + 15} \right) = 0 \cr & x\left( {x - 5} \right)\left( {x - 3} \right) = 0 \cr & {\text{Solving the equation we obtain}} \cr & x = 0,\,\,\,x = 3{\text{ and }}x = 5 \cr & {\text{From the critical values and the domain }}\left( { - \infty ,\infty } \right){\text{ we have}} \cr & \left( { - \infty ,0} \right),\,\,\left( {0,3} \right),\,\,\left( {3,5} \right),\,\,\left( {5,\infty } \right) \cr & {\text{Now}}{\text{, we will evaluate the critical value and resume in a table}} \cr} $$ \[\begin{array}{*{20}{c}} {{\rm{Interval}}}&{{\rm{Test \ value }}\left( x \right)}&{{\rm{Sign of \ }}f'\left( x \right)}&{{\rm{Behavior \ of }}f\left( x \right)}\\ {\left( { - \infty ,0} \right)}&{ - 1}& - &{{\rm{Decreasing}}}\\ {\left( {0,3} \right)}&1& + &{{\rm{Increasing}}}\\ {\left( {3,5} \right)}&4& - &{{\rm{Decreasing}}}\\ {\left( {5,\infty } \right)}&6& + &{{\rm{Increasing}}} \end{array}\] $$\eqalign{ & {\text{From the table we can conlude that the function is:}} \cr & {\text{Increasing on }}\left( {0,3} \right),\left( {5,\infty } \right) \cr & {\text{Decreasing on }}\left( { - \infty ,0} \right),\,\left( {3,5} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.