Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - 4.2 What Derivatives Tell Us - 4.2 Exercises - Page 257: 37

Answer

$$\eqalign{ & {\text{Increasing on }}\left( { - 1,1} \right) \cr & {\text{Decreasing on }}\left( { - \infty , - 1} \right),\,\left( {1,\infty } \right) \cr} $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = x{e^{ - {x^2}/2}} \cr & {\text{Derivative}} \cr & f'\left( x \right) = x\left( { - x{e^{ - {x^2}/2}}} \right) + {e^{ - {x^2}/2}} \cr & f'\left( x \right) = {e^{ - {x^2}/2}} - {x^2}{e^{ - {x^2}/2}} \cr & {\text{Set the derivative to 0}} \cr & {e^{ - {x^2}/2}}\left( {1 - {x^2}} \right) = 0 \cr & 1 - {x^2} = 0 \cr & {\text{Solving the equation we obtain}} \cr & x = - 1{\text{ and }}x = 1 \cr & {\text{From the critical values and the domain }}\left( { - \infty ,\infty } \right){\text{ we have}} \cr & \left( { - \infty , - 1} \right),\,\,\left( { - 1,1} \right),\,\,\left( {1,\infty } \right) \cr & {\text{Now}}{\text{, we will evaluate the critical value and resume in a table}} \cr} $$ \[\begin{array}{*{20}{c}} {{\rm{Interval}}}&{{\rm{Test \ value }}\left( x \right)}&{{\rm{Sign\ of }}f'\left( x \right)}&{{\rm{Behavior \ of }}f\left( x \right)}\\ {\left( { - \infty , - 1} \right)}&{ - 2}& - &{{\rm{Decreasing}}}\\ {\left( { - 1,1} \right)}&0& + &{{\rm{Increasing}}}\\ {\left( {1,\infty } \right)}&2& - &{{\rm{Decreasing}}}\\ {}&{}&{}&{} \end{array}\] $$\eqalign{ & {\text{From the table we can conlude that the function is:}} \cr & {\text{Increasing on }}\left( { - 1,1} \right) \cr & {\text{Decreasing on }}\left( { - \infty , - 1} \right),\,\left( {1,\infty } \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.