Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - 4.2 What Derivatives Tell Us - 4.2 Exercises - Page 257: 30

Answer

$$\eqalign{ & {\text{Increasing on }}\left( { - 3, - \sqrt 6 } \right),\left( {0,\sqrt 6 } \right) \cr & {\text{Decreasing on }}\left( { - \sqrt 6 ,0} \right),\,\left( {\sqrt 6 ,3} \right) \cr} $$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {x^2}\sqrt {9 - {x^2}} {\text{ on the interval }}\left( { - 3,3} \right) \cr & {\text{Derivative}} \cr & f'\left( x \right) = {x^2}\left( {\frac{{ - 2x}}{{2\sqrt {9 - {x^2}} }}} \right) + 2x\sqrt {9 - {x^2}} \cr & f'\left( x \right) = \frac{{ - {x^3}}}{{\sqrt {9 - {x^2}} }} + 2x\sqrt {9 - {x^2}} \cr & {\text{Set the derivative to 0}} \cr & \frac{{ - {x^3} + 2x\left( {9 - {x^2}} \right)}}{{\sqrt {9 - {x^2}} }} = 0 \cr & - {x^3} + 18x - 2{x^3} = 0 \cr & - 3{x^3} + 18x = 0 \cr & 3x\left( {6 - {x^2}} \right) = 0 \cr & {\text{Solving the equation we obtain}} \cr & x = 0,\,\,\,x = - \sqrt 6 {\text{ and }}x = \sqrt 6 \cr & {\text{From the critical values and the interval }}\left( { - 3,3} \right){\text{ we have}} \cr & \left( { - 3, - \sqrt 6 } \right),\,\,\left( { - \sqrt 6 ,0} \right),\,\,\left( {0,\sqrt 6 } \right),\,\,\left( {\sqrt 6 ,3} \right) \cr & {\text{Now}}{\text{, we will evaluate the critical value and resume in a table}} \cr} $$ \[\begin{array}{*{20}{c}} {{\rm{Interval}}}&{{\rm{Test\, value }}\left( x \right)}&{{\rm{Sign\, of }}f'\left( x \right)}&{{\rm{Behavior\, of }}f\left( x \right)}\\ {\left( { - 3, - \sqrt 6 } \right)}&{ - \frac{5}{2}}& + &{{\rm{Increasing}}}\\ {\left( { - \sqrt 6 ,0} \right)}&{ - 1}& - &{{\rm{Decreasing}}}\\ {\left( {0,\sqrt 6 } \right)}&{\frac{5}{2}}& + &{{\rm{Increasing}}}\\ {\left( {\sqrt 6 ,3} \right)}&1& - &{{\rm{Decreasing}}}\\ {}&{}&{}&{}\\ {}&{}&{}&{} \end{array}\] $$\eqalign{ & {\text{From the table we can conlude that the function is:}} \cr & {\text{Increasing on }}\left( { - 3, - \sqrt 6 } \right),\left( {0,\sqrt 6 } \right) \cr & {\text{Decreasing on }}\left( { - \sqrt 6 ,0} \right),\,\left( {\sqrt 6 ,3} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.