Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.10 Derivatives of Inverse Trigonometric Functions - 3.10 Execises - Page 222: 47

Answer

\[\frac{1}{4}\]

Work Step by Step

\[\begin{align} & f\left( x \right)={{x}^{3}}+x+1 \\ & \text{Differentiate} \\ & f'\left( x \right)=3{{x}^{2}}+1 \\ & \text{Use the Derivative of the Inverse Function}\left( \text{Theorem 3}\text{.23} \right) \\ & \left( {{f}^{-1}} \right)'\left( {{y}_{0}} \right)=\frac{1}{f'\left( {{x}_{0}} \right)},\text{ where }{{y}_{0}}=f\left( {{x}_{0}} \right) \\ & \text{We need to find }\left( {{f}^{-1}} \right)'\left( 3 \right)\Rightarrow {{y}_{0}}=3,\text{ therefore} \\ & f\left( {{x}_{0}} \right)=3 \\ & \text{Evaluating }f\left( 1 \right) \\ & f\left( 1 \right)={{1}^{3}}+1+1=3\Rightarrow {{x}_{0}}=1 \\ & \left( {{f}^{-1}} \right)'\left( {{y}_{0}} \right)=\frac{1}{f'\left( {{x}_{0}} \right)}\Rightarrow \left( {{f}^{-1}} \right)'\left( 3 \right)=\frac{1}{f'\left( 1 \right)} \\ & \left( {{f}^{-1}} \right)'\left( 3 \right)=\frac{1}{3{{\left( 1 \right)}^{2}}+1} \\ & \left( {{f}^{-1}} \right)'\left( 3 \right)=\frac{1}{4} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.