Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.10 Derivatives of Inverse Trigonometric Functions - 3.10 Execises - Page 222: 43

Answer

\[\left( {{f}^{-1}} \right)'\left( 2 \right)=4\]

Work Step by Step

\[\begin{align} & f\left( x \right)=\sqrt{x};\text{ }\left( 2,4 \right) \\ & \text{We have the point }\left( {{x}_{0}},{{y}_{0}} \right)=\left( 2,4 \right)\text{ and }f\left( x \right)=\sqrt{x} \\ & \text{Use the formula of the theorem 3}\text{.23} \\ & \left( {{f}^{-1}} \right)'\left( {{y}_{0}} \right)=\frac{1}{f'\left( {{x}_{0}} \right)} \\ & \text{Where }{{x}_{0}}={{f}^{-1}}\left( {{y}_{0}} \right)\text{ for the point }\left( 2,4 \right)\Rightarrow {{x}_{0}}=4\text{ and }{{y}_{0}}=2 \\ & \left( {{f}^{-1}} \right)'\left( 2 \right)=\frac{1}{f'\left( 4 \right)} \\ & \text{Calculate }f'\left( 4 \right) \\ & f\left( x \right)=\sqrt{x} \\ & f'\left( x \right)=\frac{1}{2\sqrt{x}} \\ & f'\left( 4 \right)=\frac{1}{2\sqrt{4}} \\ & \text{Therefore,} \\ & \left( {{f}^{-1}} \right)'\left( 2 \right)=\frac{1}{\frac{1}{2\sqrt{4}}} \\ & \left( {{f}^{-1}} \right)'\left( 2 \right)=2\sqrt{4} \\ & \left( {{f}^{-1}} \right)'\left( 2 \right)=4 \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.