Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.10 Derivatives of Inverse Trigonometric Functions - 3.10 Execises - Page 222: 62

Answer

\[\left( {{f}^{-1}} \right)'\left( x \right)=\frac{5}{{{\left( 1-x \right)}^{2}}}\]

Work Step by Step

\[\begin{align} & f\left( x \right)=\frac{x}{x+5} \\ & \text{Write }f\left( x \right)\text{ as }y \\ & y=\frac{x}{x+5} \\ & \text{Interchange }x\text{ and }y \\ & x=\frac{y}{y+5} \\ & \text{Solve for }y \\ & xy+5x=y \\ & xy-y=-5x \\ & y\left( x-1 \right)=-5x \\ & y=\frac{5x}{1-x} \\ & \text{Write }y\text{ as }{{f}^{-1}}\left( x \right) \\ & {{f}^{-1}}\left( x \right)=\frac{5x}{1-x} \\ & \text{Compute the derivative} \\ & \left( {{f}^{-1}} \right)'\left( x \right)=\frac{d}{dx}\left[ \frac{5x}{1-x} \right] \\ & \text{By the quotient rule} \\ & \left( {{f}^{-1}} \right)'\left( x \right)=\frac{\left( 1-x \right)\left( 5 \right)-5x\left( -1 \right)}{{{\left( 1-x \right)}^{2}}} \\ & \left( {{f}^{-1}} \right)'\left( x \right)=\frac{5-5x+5x}{{{\left( 1-x \right)}^{2}}} \\ & \left( {{f}^{-1}} \right)'\left( x \right)=\frac{5}{{{\left( 1-x \right)}^{2}}} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.