Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.10 Derivatives of Inverse Trigonometric Functions - 3.10 Execises - Page 222: 48

Answer

\[\frac{3}{2}\]

Work Step by Step

\[\begin{align} & \text{We have that the slope of the function }y=f\left( x \right)\text{ at the point} \\ & \left( 7,4 \right)\text{ is }\frac{2}{3},\text{ which implies that} \\ & m=f'\left( x \right)=\frac{2}{3}\text{ at the point }\left( 7,4 \right) \\ & f'\left( 7 \right)=\frac{2}{3} \\ & \text{Use the Derivative of the Inverse Function}\left( \text{Theorem 3}\text{.23} \right) \\ & \left( {{f}^{-1}} \right)'\left( {{y}_{0}} \right)=\frac{1}{f'\left( {{x}_{0}} \right)},\text{ where }{{y}_{0}}=f\left( {{x}_{0}} \right) \\ & \text{Calculating }\left( {{f}^{-1}} \right)'\left( x \right)\text{ at }\left( 4,7 \right),\text{ then }\left( {{f}^{-1}} \right)'\left( 4 \right) \\ & \left( {{f}^{-1}} \right)'\left( 4 \right)=\frac{1}{f'\left( {{x}_{0}} \right)}=\frac{1}{f'\left( 7 \right)} \\ & \text{Substituting }f'\left( 7 \right)=\frac{2}{3} \\ & \left( {{f}^{-1}} \right)'\left( 4 \right)=\frac{1}{f'\left( {{x}_{0}} \right)}=\frac{1}{2/3} \\ & \left( {{f}^{-1}} \right)'\left( 4 \right)=\frac{3}{2} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.