Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.10 Derivatives of Inverse Trigonometric Functions - 3.10 Execises - Page 222: 66

Answer

\[\left( {{f}^{-1}} \right)'\left( x \right)=\frac{1}{3\sqrt[3]{{{\left( x-3 \right)}^{2}}}}\]

Work Step by Step

\[\begin{align} & f\left( x \right)={{x}^{3}}+3 \\ & \text{Write }f\left( x \right)\text{ as }y \\ & y={{x}^{3}}+3 \\ & \text{Interchange }x\text{ and }y \\ & x={{y}^{3}}+3 \\ & \text{Solve for }y \\ & x-3={{y}^{3}} \\ & \sqrt[3]{x-3}=\sqrt[3]{{{y}^{3}}} \\ & \sqrt[3]{x-3}=y \\ & y=\sqrt[3]{x-3} \\ & \text{Write }y\text{ as }{{f}^{-1}}\left( x \right) \\ & {{f}^{-1}}\left( x \right)=\sqrt[3]{x-3} \\ & \text{Compute the derivative} \\ & \left( {{f}^{-1}} \right)'\left( x \right)=\frac{d}{dx}\left[ \sqrt[3]{x-3} \right] \\ & \left( {{f}^{-1}} \right)'\left( x \right)=\frac{1}{3}{{\left( x-3 \right)}^{-2/3}} \\ & \left( {{f}^{-1}} \right)'\left( x \right)=\frac{1}{3{{\left( x-3 \right)}^{2/3}}} \\ & \left( {{f}^{-1}} \right)'\left( x \right)=\frac{1}{3\sqrt[3]{{{\left( x-3 \right)}^{2}}}} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.