Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 396: 85

Answer

$$\int x b^{x} d x =b^{x}\left(\frac{x}{\ln b}-\frac{1}{\ln ^{2} b}\right)+C$$

Work Step by Step

Given $$\int x b^{x} d x=b^{x}\left(\frac{x}{\ln b}-\frac{1}{\ln ^{2} b}\right)+C$$ Let \begin{align*} u&= x\ \ \ \ \ \ \ \ \ \ dv=\frac{1}{\ln b} b^xdx\\ du&=dx \ \ \ \ \ \ \ \ v=\frac{1}{\ln b} b^x \end{align*} Then \begin{align*} \int x b^{x} d x&=\frac{x}{\ln b} b^x-\int\frac{1}{\ln b} b^xdx \\ &=b^{x}\left(\frac{x}{\ln b}-\frac{1}{\ln ^{2} b}\right)+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.