Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 396: 58

Answer

$$\int \cos ^{n} x d x = \frac{1}{n} \cos^{n-1} x\sin x+\frac{(n-1)}{n} \int \cos^{n-2}x dx$$

Work Step by Step

Given $$ \int \cos ^{n-1} x d x$$ Let \begin{align*} u&= \cos^{n-1} x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv=\cos xdx\\ du&= -(n-1)\cos^{n-2}x\sin xdx\ \ \ \ \ \ \ \ \ v=\sin x \end{align*} Then \begin{align*} \int \cos ^{n} x d x&= \cos^{n-1} x\sin x+(n-1) \int \cos^{n-2}x\sin ^2xdx\\ &= \cos^{n-1} x\sin x+(n-1) \int \cos^{n-2}x(1-\cos ^2x)dx\\ n\int \cos ^{n} x d x&= \cos^{n-1} x\sin x+(n-1) \int \cos^{n-2}x dx\\ \int \cos ^{n} x d x&= \frac{1}{n} \cos^{n-1} x\sin x+\frac{(n-1)}{n} \int \cos^{n-2}x dx\\ \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.