Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 396: 75

Answer

$x(\sin^{-1} x)^2 +2 \sin^{-1} x(\sqrt {1-x^2}) -2x +C$

Work Step by Step

We will use integration by parts to obtain: $I=\int (\sin^{-1} x)^2 \ dx \\= x (\sin^{-1} x)^2-2 \int \dfrac{x \sin^{-1} x}{\sqrt {1-x^2}} \ dx $ Plug in $a=\sin^{-1} x \implies da=\dfrac{dx}{\sqrt {1-x^2}}$ and $x =\sin a$ Now, $ x (\sin^{-1} x)^2-2 \int \dfrac{x \sin^{-1} x}{\sqrt {1-x^2}} \ dx =x(\sin^{-1} x)^2 -2 \int a \sin a \ da \\=x(\sin^{-1} x)^2 -2[a \cos a +\sin a +C] \\=x(\sin^{-1} x)^2 -\sin^{-1} x (\sqrt {1-x^2}) +x+C \\=x(\sin^{-1} x)^2 +2 \sin^{-1} x(\sqrt {1-x^2}) -2x +C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.