Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 396: 63

Answer

$\int x^n e^{-x} \ dx=-x^n e^{-x} +n \int x^{n-1} e^{-x} \ dx $

Work Step by Step

We find the reduction formula as follows: $\int x^n e^{-x} \ dx =x^n \int e^{-x} \ dx -[\int \dfrac{d}{dx} (x^n ) \int e^{-x} \ dx ] \\= x^{n} e^{-x} -n \int x^{n-1} (-e^{x}) \ dx \\=-x^n e^{-x} +n \int x^{n-1} e^{-x} \ dx $ Thus, $\int x^n e^{-x} \ dx=-x^n e^{-x} +n \int x^{n-1} e^{-x} \ dx $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.