Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 396: 61

Answer

$$x^{3} e^{x}-3 x^{2} e^{x}+6 x e^{x}-6 e^{x}+C$$

Work Step by Step

Given $$\int x^3 e^x dx$$ Use \begin{align*} \int x^n e^x dx&= x^n e^x -n\int x^{n-1} e^xdx \end{align*} Then for $n=3$ \begin{align*} \int x^3 e^x dx&= x^3 e^x -3\int x^{2} e^xdx \\ &= x^3 e^x -3\left( x^2e^x -2\int x e^xdx \right) \\ &= x^3 e^x -3 x^2e^x +6\int x e^xdx\\ &= x^3 e^x -3 x^2e^x +6 \left(x e^x-\int e^xdx\right)\\ &= x^{3} e^{x}-3 x^{2} e^{x}+6 x e^{x}-6 e^{x}+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.