Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 396: 84

Answer

\begin{align*} \int x^{n} \cos x d x&=x^{n} \sin x-n \int x^{n-1} \sin x d x\\ \int x^{n} \sin x d x&=-x^{n} \cos x+n \int x^{n-1} \cos x d x \end{align*}

Work Step by Step

Given $$\int x^{n} \cos x d x$$ Let \begin{align*} u&=x^n \ \ \ \ \ \ \ dv=\cos xdx\\ du&= nx^{n-1}\ \ \ \ \ \ v=\sin x \end{align*} Then \begin{align*} \int x^{n} \cos x d x=x^{n} \sin x-n \int x^{n-1} \sin x d x \end{align*} Given $$\int x^{n} \sin x d x$$ Let \begin{align*} u&=x^n \ \ \ \ \ \ \ dv=\sin xdx\\ du&= nx^{n-1}\ \ \ \ \ \ v=-\cos x \end{align*} Then \begin{align*} \int x^{n} \sin x d x=-x^{n} \cos x+n \int x^{n-1} \cos x d x \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.