Answer
Use $u= x^2+4x+3\ \ \ \ \to \ \ \ du =2x+4 $
Work Step by Step
Given $$ \int \frac{x+2}{x^{2}+4 x+3} d x$$
Let $$u= x^2+4x+3\ \ \ \ \to \ \ \ du =2x+4 $$
Then
\begin{align*}
\int \frac{x+2}{x^{2}+4 x+3} d x&=\int \frac{2du}{u} \\
&=2\ln |u|+C\\
&=2\ln |x^2+4x+3|+C
\end{align*}