Answer
See explanation
Work Step by Step
Compute the derivative of $g(x)e^{-x}$:
Using the product rule for the derivatives it follows:
$$(g(x)e^{-x})'=g'(x)e^{-x}+g(x)(e^{-x})'$$
$$(g(x)e^{-x})'=g'(x)e^{-x}-g(x)e^{-x}$$
$$(g(x)e^{-x})'=g(x)e^{-x}-g(x)e^{-x}$$
$$(g(x)e^{-x})'=0$$
$$g(x)e^{-x}=C$$
$$g(x)e^{-x}e^{x}=Ce^{x}$$
$$g(x)e^{-x+x}=Ce^{x}$$
$$g(x)e^{0}=Ce^{x}$$
$$g(x)=Ce^{x}$$