Answer
$$-\frac{1}{2} \cos \theta^{2}+C
$$
Work Step by Step
Given
$$ \int \theta \sin \left(\theta^{2}\right) d \theta $$
Let
$$u=\theta^{2}\ \ \ \Rightarrow \ \ \ du=2\theta d \theta $$
Then
\begin{aligned} \int \theta \sin \left(\theta^{2}\right) d \theta &=\frac{1}{2} \int \sin u d u \\ &=\frac{1}{2}(-\cos u+C) \\ &=-\frac{1}{2} \cos u+C \\
&=-\frac{1}{2} \cos \theta^{2}+C
\end{aligned}