Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 5 - The Integral - 5.7 Substitution Method - Exercises - Page 275: 41

Answer

$$\frac{-1}{2(x+5)^{2}}+c$$

Work Step by Step

Given $$ \int \frac{d x}{(x+5)^{3}}$$ Let $$u=x+5 \ \ \ \Rightarrow \ \ du= dx $$ then \begin{align*} \int \frac{d x}{(x+5)^{3}} &=\int \frac{d u}{u^{3}} \\ &=\int u^{-3} d u \\ &=-\frac{1}{2} u^{-2}+C \\ &= \frac{-1}{2(x+5)^{2}}+c \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.